Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Biosensors (Basel) ; 13(2)2023 Feb 20.
Article in English | MEDLINE | ID: covidwho-2238913

ABSTRACT

The ability to self-test for HIV is vital to preventing transmission, particularly when used in concert with HIV biomedical prevention modalities, such as pre-exposure prophylaxis (PrEP). In this paper, we review recent developments in HIV self-testing and self-sampling methods, and the potential future impact of novel materials and methods that emerged through efforts to develop more effective point-of-care (POC) SARS-CoV-2 diagnostics. We address the gaps in existing HIV self-testing technologies, where improvements in test sensitivity, sample-to-answer time, simplicity, and cost are needed to enhance diagnostic accuracy and widespread accessibility. We discuss potential paths toward the next generation of HIV self-testing through sample collection materials, biosensing assay techniques, and miniaturized instrumentation. We discuss the implications for other applications, such as self-monitoring of HIV viral load and other infectious diseases.


Subject(s)
COVID-19 , HIV Infections , Humans , Self-Testing , SARS-CoV-2 , Point-of-Care Testing
2.
Adv Sci (Weinh) ; 9(28): e2105396, 2022 10.
Article in English | MEDLINE | ID: covidwho-2047424

ABSTRACT

In many malaria-endemic regions, current detection tools are inadequate in diagnostic accuracy and accessibility. To meet the need for direct, phenotypic, and automated malaria parasite detection in field settings, a portable platform to process, image, and analyze whole blood to detect Plasmodium falciparum parasites, is developed. The liberated parasites from lysed red blood cells suspended in a magnetic field are accurately detected using this cellphone-interfaced, battery-operated imaging platform. A validation study is conducted at Ugandan clinics, processing 45 malaria-negative and 36 malaria-positive clinical samples without external infrastructure. Texture and morphology features are extracted from the sample images, and a random forest classifier is trained to assess infection status, achieving 100% sensitivity and 91% specificity against gold-standard measurements (microscopy and polymerase chain reaction), and limit of detection of 31 parasites per µL. This rapid and user-friendly platform enables portable parasite detection and can support malaria diagnostics, surveillance, and research in resource-constrained environments.


Subject(s)
Malaria, Falciparum , Malaria , Parasites , Animals , Erythrocytes , Malaria/diagnosis , Malaria/parasitology , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/parasitology , Plasmodium falciparum
3.
ACS Nano ; 16(10): 15946-15958, 2022 Oct 25.
Article in English | MEDLINE | ID: covidwho-2036752

ABSTRACT

Plasmonic metasurfaces consist of metal-dielectric interfaces that are excitable at background and leakage resonant modes. The sharp and plasmonic excitation profile of metal-free electrons on metasurfaces at the nanoscale can be used for practical applications in diverse fields, including optoelectronics, energy harvesting, and biosensing. Currently, Fano resonant metasurface fabrication processes for biosensor applications are costly, need clean room access, and involve limited small-scale surface areas that are not easy for accurate sample placement. Here, we leverage the large-scale active area with uniform surface patterns present on optical disc-based metasurfaces as a cost-effective method to excite asymmetric plasmonic modes, enabling tunable optical Fano resonance interfacing with a microfluidic channel for multiple target detection in the visible wavelength range. We engineered plasmonic metasurfaces for biosensing through efficient layer-by-layer surface functionalization toward real-time measurement of target binding at the molecular scale. Further, we demonstrated the quantitative detection of antibodies, proteins, and the whole viral particles of SARS-CoV-2 with a high sensitivity and specificity, even distinguishing it from similar RNA viruses such as influenza and MERS. This cost-effective plasmonic metasurface platform offers a small-scale light-manipulation system, presenting considerable potential for fast, real-time detection of SARS-CoV-2 and pathogens in resource-limited settings.


Subject(s)
Biosensing Techniques , COVID-19 , Humans , SARS-CoV-2 , COVID-19/diagnosis , Proteins/chemistry , Metals
SELECTION OF CITATIONS
SEARCH DETAIL